direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C23⋊C4, C24⋊2C4, C23.12D4, C23.1C23, C24.10C22, (C2×D4)⋊5C4, C23⋊1(C2×C4), (C22×C4)⋊3C4, C22.8(C2×D4), (C22×D4).4C2, C22⋊C4⋊11C22, (C2×D4).42C22, C22.6(C22×C4), C22.29(C22⋊C4), (C2×C4)⋊1(C2×C4), (C2×C22⋊C4)⋊4C2, C2.12(C2×C22⋊C4), SmallGroup(64,90)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C23⋊C4
G = < a,b,c,d,e | a2=b2=c2=d2=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=bcd, ece-1=cd=dc, de=ed >
Subgroups: 217 in 105 conjugacy classes, 41 normal (13 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C22⋊C4, C22⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C23⋊C4, C2×C22⋊C4, C22×D4, C2×C23⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C23⋊C4, C2×C22⋊C4, C2×C23⋊C4
Character table of C2×C23⋊C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ9 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | i | -i | 1 | -1 | i | -i | -i | i | i | -i | linear of order 4 |
ρ10 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -i | i | 1 | -1 | -i | i | i | -i | -i | i | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -i | -i | -1 | -1 | i | i | i | i | -i | -i | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | i | i | -1 | -1 | -i | -i | -i | -i | i | i | linear of order 4 |
ρ13 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | i | -i | -1 | 1 | -i | i | -i | i | -i | i | linear of order 4 |
ρ14 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -i | i | -1 | 1 | i | -i | i | -i | i | -i | linear of order 4 |
ρ15 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -i | -i | 1 | 1 | -i | -i | i | i | i | i | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | i | i | 1 | 1 | i | i | -i | -i | -i | -i | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ22 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
(1 2)(3 4)(5 7)(6 8)(9 15)(10 16)(11 13)(12 14)
(1 9)(2 15)(3 13)(4 11)(5 10)(6 12)(7 16)(8 14)
(1 5)(2 7)(3 8)(4 6)(9 10)(11 12)(13 14)(15 16)
(1 4)(2 3)(5 6)(7 8)(9 11)(10 12)(13 15)(14 16)
(5 6)(7 8)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (1,2)(3,4)(5,7)(6,8)(9,15)(10,16)(11,13)(12,14), (1,9)(2,15)(3,13)(4,11)(5,10)(6,12)(7,16)(8,14), (1,5)(2,7)(3,8)(4,6)(9,10)(11,12)(13,14)(15,16), (1,4)(2,3)(5,6)(7,8)(9,11)(10,12)(13,15)(14,16), (5,6)(7,8)(9,10,11,12)(13,14,15,16)>;
G:=Group( (1,2)(3,4)(5,7)(6,8)(9,15)(10,16)(11,13)(12,14), (1,9)(2,15)(3,13)(4,11)(5,10)(6,12)(7,16)(8,14), (1,5)(2,7)(3,8)(4,6)(9,10)(11,12)(13,14)(15,16), (1,4)(2,3)(5,6)(7,8)(9,11)(10,12)(13,15)(14,16), (5,6)(7,8)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(1,2),(3,4),(5,7),(6,8),(9,15),(10,16),(11,13),(12,14)], [(1,9),(2,15),(3,13),(4,11),(5,10),(6,12),(7,16),(8,14)], [(1,5),(2,7),(3,8),(4,6),(9,10),(11,12),(13,14),(15,16)], [(1,4),(2,3),(5,6),(7,8),(9,11),(10,12),(13,15),(14,16)], [(5,6),(7,8),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,76);
(1 15)(2 16)(3 13)(4 14)(5 7)(6 8)(9 11)(10 12)
(1 12)(2 7)(3 8)(4 11)(5 16)(6 13)(9 14)(10 15)
(2 14)(4 16)(5 11)(7 9)
(1 13)(2 14)(3 15)(4 16)(5 11)(6 12)(7 9)(8 10)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (1,15)(2,16)(3,13)(4,14)(5,7)(6,8)(9,11)(10,12), (1,12)(2,7)(3,8)(4,11)(5,16)(6,13)(9,14)(10,15), (2,14)(4,16)(5,11)(7,9), (1,13)(2,14)(3,15)(4,16)(5,11)(6,12)(7,9)(8,10), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;
G:=Group( (1,15)(2,16)(3,13)(4,14)(5,7)(6,8)(9,11)(10,12), (1,12)(2,7)(3,8)(4,11)(5,16)(6,13)(9,14)(10,15), (2,14)(4,16)(5,11)(7,9), (1,13)(2,14)(3,15)(4,16)(5,11)(6,12)(7,9)(8,10), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(1,15),(2,16),(3,13),(4,14),(5,7),(6,8),(9,11),(10,12)], [(1,12),(2,7),(3,8),(4,11),(5,16),(6,13),(9,14),(10,15)], [(2,14),(4,16),(5,11),(7,9)], [(1,13),(2,14),(3,15),(4,16),(5,11),(6,12),(7,9),(8,10)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,78);
(1 8)(2 7)(3 5)(4 6)(9 14)(10 15)(11 16)(12 13)
(1 11)(2 10)(3 9)(4 12)(5 14)(6 13)(7 15)(8 16)
(2 4)(6 7)(10 12)(13 15)
(1 3)(2 4)(5 8)(6 7)(9 11)(10 12)(13 15)(14 16)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (1,8)(2,7)(3,5)(4,6)(9,14)(10,15)(11,16)(12,13), (1,11)(2,10)(3,9)(4,12)(5,14)(6,13)(7,15)(8,16), (2,4)(6,7)(10,12)(13,15), (1,3)(2,4)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)>;
G:=Group( (1,8)(2,7)(3,5)(4,6)(9,14)(10,15)(11,16)(12,13), (1,11)(2,10)(3,9)(4,12)(5,14)(6,13)(7,15)(8,16), (2,4)(6,7)(10,12)(13,15), (1,3)(2,4)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(1,8),(2,7),(3,5),(4,6),(9,14),(10,15),(11,16),(12,13)], [(1,11),(2,10),(3,9),(4,12),(5,14),(6,13),(7,15),(8,16)], [(2,4),(6,7),(10,12),(13,15)], [(1,3),(2,4),(5,8),(6,7),(9,11),(10,12),(13,15),(14,16)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,92);
(1 11)(2 12)(3 9)(4 10)(5 15)(6 16)(7 13)(8 14)
(1 5)(3 9)(4 14)(7 13)(8 10)(11 15)
(1 11)(2 6)(3 9)(4 8)(5 15)(7 13)(10 14)(12 16)
(1 15)(2 16)(3 13)(4 14)(5 11)(6 12)(7 9)(8 10)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (1,11)(2,12)(3,9)(4,10)(5,15)(6,16)(7,13)(8,14), (1,5)(3,9)(4,14)(7,13)(8,10)(11,15), (1,11)(2,6)(3,9)(4,8)(5,15)(7,13)(10,14)(12,16), (1,15)(2,16)(3,13)(4,14)(5,11)(6,12)(7,9)(8,10), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;
G:=Group( (1,11)(2,12)(3,9)(4,10)(5,15)(6,16)(7,13)(8,14), (1,5)(3,9)(4,14)(7,13)(8,10)(11,15), (1,11)(2,6)(3,9)(4,8)(5,15)(7,13)(10,14)(12,16), (1,15)(2,16)(3,13)(4,14)(5,11)(6,12)(7,9)(8,10), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(1,11),(2,12),(3,9),(4,10),(5,15),(6,16),(7,13),(8,14)], [(1,5),(3,9),(4,14),(7,13),(8,10),(11,15)], [(1,11),(2,6),(3,9),(4,8),(5,15),(7,13),(10,14),(12,16)], [(1,15),(2,16),(3,13),(4,14),(5,11),(6,12),(7,9),(8,10)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,93);
(1 11)(2 12)(3 9)(4 10)(5 13)(6 14)(7 15)(8 16)
(1 6)(2 12)(3 9)(4 5)(7 15)(8 16)(10 13)(11 14)
(2 15)(4 13)(5 10)(7 12)
(1 14)(2 15)(3 16)(4 13)(5 10)(6 11)(7 12)(8 9)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (1,11)(2,12)(3,9)(4,10)(5,13)(6,14)(7,15)(8,16), (1,6)(2,12)(3,9)(4,5)(7,15)(8,16)(10,13)(11,14), (2,15)(4,13)(5,10)(7,12), (1,14)(2,15)(3,16)(4,13)(5,10)(6,11)(7,12)(8,9), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;
G:=Group( (1,11)(2,12)(3,9)(4,10)(5,13)(6,14)(7,15)(8,16), (1,6)(2,12)(3,9)(4,5)(7,15)(8,16)(10,13)(11,14), (2,15)(4,13)(5,10)(7,12), (1,14)(2,15)(3,16)(4,13)(5,10)(6,11)(7,12)(8,9), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(1,11),(2,12),(3,9),(4,10),(5,13),(6,14),(7,15),(8,16)], [(1,6),(2,12),(3,9),(4,5),(7,15),(8,16),(10,13),(11,14)], [(2,15),(4,13),(5,10),(7,12)], [(1,14),(2,15),(3,16),(4,13),(5,10),(6,11),(7,12),(8,9)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,94);
(1 3)(2 4)(5 8)(6 7)(9 16)(10 13)(11 14)(12 15)
(1 14)(2 10)(3 11)(4 13)(5 15)(6 9)(7 16)(8 12)
(1 3)(2 5)(4 8)(6 7)(9 16)(10 15)(11 14)(12 13)
(1 7)(2 8)(3 6)(4 5)(9 11)(10 12)(13 15)(14 16)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (1,3)(2,4)(5,8)(6,7)(9,16)(10,13)(11,14)(12,15), (1,14)(2,10)(3,11)(4,13)(5,15)(6,9)(7,16)(8,12), (1,3)(2,5)(4,8)(6,7)(9,16)(10,15)(11,14)(12,13), (1,7)(2,8)(3,6)(4,5)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)>;
G:=Group( (1,3)(2,4)(5,8)(6,7)(9,16)(10,13)(11,14)(12,15), (1,14)(2,10)(3,11)(4,13)(5,15)(6,9)(7,16)(8,12), (1,3)(2,5)(4,8)(6,7)(9,16)(10,15)(11,14)(12,13), (1,7)(2,8)(3,6)(4,5)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(1,3),(2,4),(5,8),(6,7),(9,16),(10,13),(11,14),(12,15)], [(1,14),(2,10),(3,11),(4,13),(5,15),(6,9),(7,16),(8,12)], [(1,3),(2,5),(4,8),(6,7),(9,16),(10,15),(11,14),(12,13)], [(1,7),(2,8),(3,6),(4,5),(9,11),(10,12),(13,15),(14,16)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,102);
C2×C23⋊C4 is a maximal subgroup of
C24.5D4 C24.6D4 C25⋊C4 C24.165C23 2+ 1+4⋊2C4 C24.167C23 C24.C23 C24.22D4 C25.C22 C24.26D4 C24.78D4 C24.174C23 C24.28D4 C24.175C23 C24⋊D4 C24.31D4 C24⋊Q8 C24.33D4 C24.36D4 C24.39D4 C23.C24 C24⋊C23 (C2×D4)⋊7F5
C2×C23⋊C4 is a maximal quotient of
C23.8M4(2) C25.3C4 (C2×C4)⋊M4(2) C23⋊M4(2) C23⋊C8⋊C2 C24.(C2×C4) C24.45(C2×C4) C24.53D4 C24.150D4 C24.54D4 C24.55D4 C24.56D4 C24.57D4 C24.58D4 C24.59D4 C24.60D4 C24.61D4 C25⋊C4 C24.167C23 C24.68D4 C24.78D4 C24.175C23 C24.176C23 C4○C2≀C4 C24.36D4 C2≀C4⋊C2 C23.(C2×D4) C4⋊Q8⋊29C4 C24.39D4 C4.4D4⋊C4 C4⋊Q8⋊C4 (C2×D4).135D4 C4⋊Q8.C4 C4⋊1D4.C4 (C2×D4).137D4 (C2×D4)⋊7F5
Matrix representation of C2×C23⋊C4 ►in GL6(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
0 | -1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,-1,0,0] >;
C2×C23⋊C4 in GAP, Magma, Sage, TeX
C_2\times C_2^3\rtimes C_4
% in TeX
G:=Group("C2xC2^3:C4");
// GroupNames label
G:=SmallGroup(64,90);
// by ID
G=gap.SmallGroup(64,90);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,963,730]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations
Export